Initial Boundary Value Problem of the General Three-Component Camassa-Holm Shallow Water System on an Interval

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval

We investigate the nonhomogeneous initial boundary value problem for the Camassa-Holm equation on an interval. We provide a local in time existence theorem and a weak strong uniqueness result. Next we establish a result on the global asymptotic stabilization problem by means of a boundary feedback law.

متن کامل

Initial Boundary Value Problem and Asymptotic Stabilization of the Two-Component Camassa-Holm Equation

and Applied Analysis 3 Let T be a positive number. In the following we take ΩT 0, T × 0, 1 . Let vl and vr be in C0 0, T , R and m0 ∈ L∞ 0, 1 , ρ0 ∈ W1,∞ 0, 1 . We set Γl {t ∈ 0, T | vl t > 0}, Γr {t ∈ 0, T | vr t < 0}. 1.3 In the following, we will always suppose that the sets Pl {t ∈ 0, T | vl t 0}, Pr {t ∈ 0, T | vr t 0} 1.4 have a finite number of connected components. Finally, let ml, ρl ∈...

متن کامل

Blow-up of solution of an initial boundary value problem for a generalized Camassa-Holm equation

In this paper, we study the following initial boundary value problem for a generalized Camassa-Holm equation

متن کامل

Global Dissipative Solutions for the Two-component Camassa-holm Shallow Water System

This article presents a continuous semigroup of globally defined weak dissipative solutions for the two-component Camassa-Holm system. Such solutions are established by using a new approach based on characteristics a set of new variables overcoming the difficulties inherent in multi-component systems.

متن کامل

Stability of the Camassa-Holm peakons in the dynamics of a shallow-water-type system

The stability of the Camassa-Holm (periodic) peakons in the dynamics of an integrable shallow-water-type system is investigated. A variational approach with the use of the Lyapunov method is presented to prove the variational characterization and the orbital stability of these wave patterns. In addition, a sufficient condition for the global existence of strong solutions is given. Finally, a lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces and Applications

سال: 2013

ISSN: 0972-6802,1758-4965

DOI: 10.1155/2013/691731